2.373J/3.48/6.778J/10.584/16.288J/SMA5108/4I6

YIELD AND RELIABILITY OF MEMS

28 April 2003

V. T. Srikar and S. Mark Spearing

Massachusetts Institute of Technology

John Williams

Cambridge University Engineering Department

Yield and Reliability

Reliability: Measure of the probability of failure of a device in service - due to any cause

Yield: Measure of the number of devices (or component parts) produced vs. the expected number given the amount of incoming material/devices started

(Some) Yield and Reliability Concerns in MEMS Reliability Concerns: Stiction Fracture ✓ Delamination ✓ Delamination ✓ Fatigue ✓ Wear Wear Yield Concerns: Stiction Particle contamination Residual Stress and gradients ✓ Fracture ✓ Fracture ✓

MEMS Reliability concerns not discussed here

- Moisture diffusion
- Gas diffusion
- Thermal runaways
- Creep/relaxation (particularly polymers, soft metals)
- Electrical breakdown (shorting, sparking)
- Interconnect reliability
- EM Fields
- Radiation
-

If it can fail, it will (Murphy's law), but application of common sense, and proactive failure mode analysis can ease reliability issues (ask the "what if?" questions and perform tests)

MEMS Yield issues/remedies not discussed here

- Achieving designed tolerances in processes
- Interfaces (bonds, interconnects, joints)
- Residual stresses
- Gross errors (tool settings
- Yields multiply (0.99100=0.37)
- Back end processes are particularly crucial
 - packaging, wafer bonding, interconnects
- Application of statistical process control, process capability, total quality management, 10 x process improvement

Devices can be designed for manufacturability, but processes have to be managed with yield as an objective function

Stiction

•Undesirable Immobilization of Mechanical Structures

Outline of Stiction	
•	Nature of collapsing forces Electrostatic Capillary Mechanical (Shock)
•	Techniques to reduce collapsing forces
•	Nature of solid-solid adhesion
•	Techniques to reduce adhesion Dimples Self-Assembled Monolayers (SAM)
•	Recovery after stiction Mechanical forces Lorentz forces

1. Electrostatic Forces: Pull-In

2. Capillary Forces

Elimination of Collapsing Force

Change Design: Increase stiffness of structures

Elimination of Adhesion: SAM

Typical Precursor Molecules: octadecyltrichlorosilane (OTS): $CH_3 (CH_2)_{17}SiCl_3$ Perfluorodecyltrichlorosilane (FDTS): $CF_3(CF_2)_7(CH_2)_2SiCl_3$ i.e., R- SiCl₃

(Maboudian, Ashurt, Carraro)

Elimination of Adhesion: SAM Formation Process

Typical thickness: 1 - 3 nm Coat at ambient; Bake at ~100 °C for 2 -3 hours

Manufacturability Concerns:

- •Reproducibility (Many process parameters)
- •Scaling from die-level to wafer-level
- Aging characteristics
- Damage during contact (wear)

(Maboudian, Ashurt, Carraro)

Summary of Stiction

- •Failure = Mechanical Collapse + Solid-Solid Adhesion
- •Forces causing collapse: Electrostatic; Capillary; Mechanical..
- (Quantitative understanding of many mechanisms)
- •Qualitative understanding of solid-solid adhesion
- •Stiction can be reduced by
 - -- Avoiding wet release processes
 - -- Reducing surface energies (DLC, SAM; texturing)
 - -- Applying external release forces (Magnetic; Mechanical)

TRIBOLOGY IN MEMS

John Williams, Cambridge University Engineering Dept

Wear of a MEMS journal bearing

Run to failure at 1720 Hz for 158000 cycles, i.e. 91 s

After: Tanner, D., Miller, W. et al 'The effect of Frequency on the Lifetime of a Surface Micromachined Microengine Driving a Load' Sandia National Labs, Albuquerque.

THE MEMS OPERATING REGIME

- Macroscopic machines often limited by inertia stresses: MEMS usually limited by surface forces stiction/friction and wear
- Conventional liquid lubrication impossible because of meniscus force effects MEMS invariably run dry

• Linear dimensions in MEMS typically x1/100 those of macromachines

- Rotational speeds in MEMS typically x30 those of macro-machines
- Sliding speeds are (by macro standards) lowish: 10 100 mm s⁻¹
- Sliding distances, in rotating bearings, of order of hundreds of km (100 km typical for a month of continuous use)

time

CONSEQUENCES FOR WEAR LIFE

- For 'reasonable' mechanical performance, nominal bearing pressures p in MEMS must be ~ 1 MPa or more
- For 'reasonable' mechanical life, wear coefficients K must be $\sim 10^{-8}$ mm³ N⁻¹ m⁻¹ or less
- Many MEMS devices based on semiconductor fabrication techniques: silicon is a poor tribo-material needs surface engineering SiC, DLC...?
- Aim to reduce both static adhesion stiction and running friction
- Both stiction and μ can be influenced by surface topography
- Relevant surface features will be of 10 nm 1 μ m, influenced by microstructure, processing

ARCHARD WEAR LAW

- Local wear rate = $K_w x$ pressure x sliding velocity
- K_w is the 'dimensional wear coefficient' or 'specific wear rate'
- K_w conventionally expressed in: mm³ N⁻¹ m⁻¹
- For 'reasonable' mechanical life, wear coefficients K must be $\sim 10^{-8}$ mm³ N⁻¹ m⁻¹ or less
- Si on Si has K_w of 10⁻⁶ or more

NORMALIZED WEAR LAW

•Wear = Volume of material removed per unit length of contact

	P_n : Normal load (< 1µN)
$\Delta V \sim P_n K P_n$	$\sigma_{\rm f}$: Fracture strength (< 1 GPa)
$\overline{\Delta l} \propto \overline{H} \approx \overline{9\sigma_f}$	K: 3 x 10 ⁻⁷
J	n: 10 ⁵ cycles/sec
	$\Delta l: 10^5 \text{ x } 10^{-6} \text{ m/s}$

$$\implies \Delta V \sim 0.3 \text{ x } 10^{-4} \text{ } \mu \text{m}^{3/\text{s}}$$

~ 1 μ m³ every 10 hours!

But, bulk wear equations may not completely apply - adhesion processes occur at small scales (McClintock & Argon)

WOBBLE MOTOR EXAMPLE

Mehregany & Senturia, MIT

- sliding distances up to km, measure wear by observing slip
- K_w ca. 10⁻⁶ mm ³ N⁻¹ m ⁻¹ for poly Si on poly Si

Pivot bearings – comparison of MEMS and watch

Watch - balance wheel bearing, steel on ceramic

$$P = 0.1 \text{ MPa}, \ \omega \approx 0.5 \text{ s}^{-1}, \ \text{K}_{w} = 2 \times 10^{-7} \text{ mm}^{3} \text{ N}^{-1} \text{ m}^{-1}$$

 $K_w PN$ for one year = 5 × 10⁻⁵, ten years = 5 × 10⁻⁴

MEMS - silicon on silicon

 $P = 0.1 \text{ MPa}, \ \omega \approx 0.5 \text{ s}^{-1} (10,000 \text{ rpm}), \ \text{K}_{\text{w}} = 1 \times 10^{-3} \text{ mm}^{3} \text{ N}^{-1} \text{ m}^{-1}$

 $K_w PN$ for one minute = 1 × 10⁻³, one hour = 6 × 10⁻²

Frictional torque development in watch and MEMS pivot bearings

Journal bearing

If, at every point Archard wear eqn applies, then

and β_0 is small.

TRIBOLOGICAL CONCLUSIONS FOR MEMS

- Si on Si is a poor bearing combination
- Hard materials, surface modification may provide solutions
- Air bearings may allow for high speed operation
 - Cube square scaling
- At the moment no successful commercial MEMS use sliding contacts or rotating elements
 - Due to power density and wear considerations

References

1. C. H. Mastrangelo, *Adhesion-related failure mechanisms in microelectromechanical devices*, Tribology Letters, vol. 3, pp. 223 – 238 (1997)

2. C. H. Mastrangelo and C. H. Hsu, *Mechanical stability and adhesion of microstructures under capillary forces*, Parts I & II, J. Microelectromechanical Systems, vol. 2, pp. 33–55 (1993)

3. R. Maboudian, W. R. Ashurt, & C. Carraro, *Self-assembled monolayers as anti-stiction coatings for MEMS: characteristics and recent developments*, Sensors and Actuators, vol. A82, pp. 219-223 (2000)

4. N. Tas, T. Sonnenberg, H. Jensen, R. Legtenberg, & M. Elwenspoek, *Stiction in surface micromachining*, J. Micromech. Microeng., vol. 6, pp. 385 – 397 (1996)

5. V. T. Srikar & S. D. Senturia, *The reliability of MEMS in shock environments*, J. Microelectromechanical Systems (June 2002)

6. F. A. McClintock & A. S. Argon, Mechanical Behavior of Materials, Addison-Wesley (1965)